direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23.18D10, C24.58D10, (C2×D4).228D10, (C23×Dic5)⋊8C2, (C22×D4).10D5, (C2×C10).291C24, (C2×C20).642C23, (C22×C10).121D4, (C22×C4).269D10, C10.139(C22×D4), C23.67(C5⋊D4), C23.D5⋊57C22, (D4×C10).311C22, C10.D4⋊72C22, C10⋊5(C22.D4), (C23×C10).73C22, C23.133(C22×D5), C22.305(C23×D5), C22.77(D4⋊2D5), (C22×C10).227C23, (C22×C20).437C22, (C2×Dic5).291C23, (C22×Dic5)⋊48C22, (D4×C2×C10).21C2, (C2×C10).73(C2×D4), C5⋊6(C2×C22.D4), C10.103(C2×C4○D4), C2.67(C2×D4⋊2D5), (C2×C23.D5)⋊24C2, C2.12(C22×C5⋊D4), (C2×C10.D4)⋊47C2, (C2×C4).236(C22×D5), C22.108(C2×C5⋊D4), (C2×C10).175(C4○D4), SmallGroup(320,1468)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 958 in 342 conjugacy classes, 127 normal (19 characteristic)
C1, C2, C2 [×6], C2 [×6], C4 [×10], C22, C22 [×10], C22 [×22], C5, C2×C4 [×2], C2×C4 [×26], D4 [×8], C23, C23 [×8], C23 [×10], C10, C10 [×6], C10 [×6], C22⋊C4 [×12], C4⋊C4 [×8], C22×C4, C22×C4 [×12], C2×D4 [×4], C2×D4 [×4], C24 [×2], Dic5 [×8], C20 [×2], C2×C10, C2×C10 [×10], C2×C10 [×22], C2×C22⋊C4 [×3], C2×C4⋊C4 [×2], C22.D4 [×8], C23×C4, C22×D4, C2×Dic5 [×8], C2×Dic5 [×16], C2×C20 [×2], C2×C20 [×2], C5×D4 [×8], C22×C10, C22×C10 [×8], C22×C10 [×10], C2×C22.D4, C10.D4 [×8], C23.D5 [×12], C22×Dic5 [×8], C22×Dic5 [×4], C22×C20, D4×C10 [×4], D4×C10 [×4], C23×C10 [×2], C2×C10.D4 [×2], C23.18D10 [×8], C2×C23.D5, C2×C23.D5 [×2], C23×Dic5, D4×C2×C10, C2×C23.18D10
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22.D4 [×4], C22×D4, C2×C4○D4 [×2], C5⋊D4 [×4], C22×D5 [×7], C2×C22.D4, D4⋊2D5 [×4], C2×C5⋊D4 [×6], C23×D5, C23.18D10 [×4], C2×D4⋊2D5 [×2], C22×C5⋊D4, C2×C23.18D10
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=1, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >
(1 27)(2 28)(3 29)(4 30)(5 26)(6 21)(7 22)(8 23)(9 24)(10 25)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(41 62)(42 63)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 61)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(81 115)(82 116)(83 117)(84 118)(85 119)(86 120)(87 111)(88 112)(89 113)(90 114)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(121 150)(122 141)(123 142)(124 143)(125 144)(126 145)(127 146)(128 147)(129 148)(130 149)(131 153)(132 154)(133 155)(134 156)(135 157)(136 158)(137 159)(138 160)(139 151)(140 152)
(1 41)(2 47)(3 43)(4 49)(5 45)(6 50)(7 46)(8 42)(9 48)(10 44)(11 51)(12 57)(13 53)(14 59)(15 55)(16 56)(17 52)(18 58)(19 54)(20 60)(21 61)(22 67)(23 63)(24 69)(25 65)(26 66)(27 62)(28 68)(29 64)(30 70)(31 71)(32 77)(33 73)(34 79)(35 75)(36 76)(37 72)(38 78)(39 74)(40 80)(81 135)(82 123)(83 137)(84 125)(85 139)(86 127)(87 131)(88 129)(89 133)(90 121)(91 128)(92 132)(93 130)(94 134)(95 122)(96 136)(97 124)(98 138)(99 126)(100 140)(101 141)(102 158)(103 143)(104 160)(105 145)(106 152)(107 147)(108 154)(109 149)(110 156)(111 153)(112 148)(113 155)(114 150)(115 157)(116 142)(117 159)(118 144)(119 151)(120 146)
(1 17)(2 18)(3 19)(4 20)(5 16)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 52)(42 53)(43 54)(44 55)(45 56)(46 57)(47 58)(48 59)(49 60)(50 51)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)(81 100)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 97)(89 98)(90 99)(101 120)(102 111)(103 112)(104 113)(105 114)(106 115)(107 116)(108 117)(109 118)(110 119)(121 126)(122 127)(123 128)(124 129)(125 130)(131 136)(132 137)(133 138)(134 139)(135 140)(141 146)(142 147)(143 148)(144 149)(145 150)(151 156)(152 157)(153 158)(154 159)(155 160)
(1 7)(2 8)(3 9)(4 10)(5 6)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(81 95)(82 96)(83 97)(84 98)(85 99)(86 100)(87 91)(88 92)(89 93)(90 94)(101 115)(102 116)(103 117)(104 118)(105 119)(106 120)(107 111)(108 112)(109 113)(110 114)(121 134)(122 135)(123 136)(124 137)(125 138)(126 139)(127 140)(128 131)(129 132)(130 133)(141 157)(142 158)(143 159)(144 160)(145 151)(146 152)(147 153)(148 154)(149 155)(150 156)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 129 12 137)(2 123 13 131)(3 127 14 135)(4 121 15 139)(5 125 11 133)(6 138 16 130)(7 132 17 124)(8 136 18 128)(9 140 19 122)(10 134 20 126)(21 160 31 149)(22 154 32 143)(23 158 33 147)(24 152 34 141)(25 156 35 145)(26 144 36 155)(27 148 37 159)(28 142 38 153)(29 146 39 157)(30 150 40 151)(41 92 57 97)(42 82 58 87)(43 100 59 95)(44 90 60 85)(45 98 51 93)(46 88 52 83)(47 96 53 91)(48 86 54 81)(49 94 55 99)(50 84 56 89)(61 118 71 113)(62 108 72 103)(63 116 73 111)(64 106 74 101)(65 114 75 119)(66 104 76 109)(67 112 77 117)(68 102 78 107)(69 120 79 115)(70 110 80 105)
G:=sub<Sym(160)| (1,27)(2,28)(3,29)(4,30)(5,26)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,61)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,111)(88,112)(89,113)(90,114)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(121,150)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)(128,147)(129,148)(130,149)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,151)(140,152), (1,41)(2,47)(3,43)(4,49)(5,45)(6,50)(7,46)(8,42)(9,48)(10,44)(11,51)(12,57)(13,53)(14,59)(15,55)(16,56)(17,52)(18,58)(19,54)(20,60)(21,61)(22,67)(23,63)(24,69)(25,65)(26,66)(27,62)(28,68)(29,64)(30,70)(31,71)(32,77)(33,73)(34,79)(35,75)(36,76)(37,72)(38,78)(39,74)(40,80)(81,135)(82,123)(83,137)(84,125)(85,139)(86,127)(87,131)(88,129)(89,133)(90,121)(91,128)(92,132)(93,130)(94,134)(95,122)(96,136)(97,124)(98,138)(99,126)(100,140)(101,141)(102,158)(103,143)(104,160)(105,145)(106,152)(107,147)(108,154)(109,149)(110,156)(111,153)(112,148)(113,155)(114,150)(115,157)(116,142)(117,159)(118,144)(119,151)(120,146), (1,17)(2,18)(3,19)(4,20)(5,16)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,52)(42,53)(43,54)(44,55)(45,56)(46,57)(47,58)(48,59)(49,60)(50,51)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,100)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(101,120)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,7)(2,8)(3,9)(4,10)(5,6)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,91)(88,92)(89,93)(90,94)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,111)(108,112)(109,113)(110,114)(121,134)(122,135)(123,136)(124,137)(125,138)(126,139)(127,140)(128,131)(129,132)(130,133)(141,157)(142,158)(143,159)(144,160)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,129,12,137)(2,123,13,131)(3,127,14,135)(4,121,15,139)(5,125,11,133)(6,138,16,130)(7,132,17,124)(8,136,18,128)(9,140,19,122)(10,134,20,126)(21,160,31,149)(22,154,32,143)(23,158,33,147)(24,152,34,141)(25,156,35,145)(26,144,36,155)(27,148,37,159)(28,142,38,153)(29,146,39,157)(30,150,40,151)(41,92,57,97)(42,82,58,87)(43,100,59,95)(44,90,60,85)(45,98,51,93)(46,88,52,83)(47,96,53,91)(48,86,54,81)(49,94,55,99)(50,84,56,89)(61,118,71,113)(62,108,72,103)(63,116,73,111)(64,106,74,101)(65,114,75,119)(66,104,76,109)(67,112,77,117)(68,102,78,107)(69,120,79,115)(70,110,80,105)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,26)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,61)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,111)(88,112)(89,113)(90,114)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(121,150)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)(128,147)(129,148)(130,149)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,151)(140,152), (1,41)(2,47)(3,43)(4,49)(5,45)(6,50)(7,46)(8,42)(9,48)(10,44)(11,51)(12,57)(13,53)(14,59)(15,55)(16,56)(17,52)(18,58)(19,54)(20,60)(21,61)(22,67)(23,63)(24,69)(25,65)(26,66)(27,62)(28,68)(29,64)(30,70)(31,71)(32,77)(33,73)(34,79)(35,75)(36,76)(37,72)(38,78)(39,74)(40,80)(81,135)(82,123)(83,137)(84,125)(85,139)(86,127)(87,131)(88,129)(89,133)(90,121)(91,128)(92,132)(93,130)(94,134)(95,122)(96,136)(97,124)(98,138)(99,126)(100,140)(101,141)(102,158)(103,143)(104,160)(105,145)(106,152)(107,147)(108,154)(109,149)(110,156)(111,153)(112,148)(113,155)(114,150)(115,157)(116,142)(117,159)(118,144)(119,151)(120,146), (1,17)(2,18)(3,19)(4,20)(5,16)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,52)(42,53)(43,54)(44,55)(45,56)(46,57)(47,58)(48,59)(49,60)(50,51)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,100)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(101,120)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,7)(2,8)(3,9)(4,10)(5,6)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,91)(88,92)(89,93)(90,94)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,111)(108,112)(109,113)(110,114)(121,134)(122,135)(123,136)(124,137)(125,138)(126,139)(127,140)(128,131)(129,132)(130,133)(141,157)(142,158)(143,159)(144,160)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,129,12,137)(2,123,13,131)(3,127,14,135)(4,121,15,139)(5,125,11,133)(6,138,16,130)(7,132,17,124)(8,136,18,128)(9,140,19,122)(10,134,20,126)(21,160,31,149)(22,154,32,143)(23,158,33,147)(24,152,34,141)(25,156,35,145)(26,144,36,155)(27,148,37,159)(28,142,38,153)(29,146,39,157)(30,150,40,151)(41,92,57,97)(42,82,58,87)(43,100,59,95)(44,90,60,85)(45,98,51,93)(46,88,52,83)(47,96,53,91)(48,86,54,81)(49,94,55,99)(50,84,56,89)(61,118,71,113)(62,108,72,103)(63,116,73,111)(64,106,74,101)(65,114,75,119)(66,104,76,109)(67,112,77,117)(68,102,78,107)(69,120,79,115)(70,110,80,105) );
G=PermutationGroup([(1,27),(2,28),(3,29),(4,30),(5,26),(6,21),(7,22),(8,23),(9,24),(10,25),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(41,62),(42,63),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,61),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(81,115),(82,116),(83,117),(84,118),(85,119),(86,120),(87,111),(88,112),(89,113),(90,114),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(121,150),(122,141),(123,142),(124,143),(125,144),(126,145),(127,146),(128,147),(129,148),(130,149),(131,153),(132,154),(133,155),(134,156),(135,157),(136,158),(137,159),(138,160),(139,151),(140,152)], [(1,41),(2,47),(3,43),(4,49),(5,45),(6,50),(7,46),(8,42),(9,48),(10,44),(11,51),(12,57),(13,53),(14,59),(15,55),(16,56),(17,52),(18,58),(19,54),(20,60),(21,61),(22,67),(23,63),(24,69),(25,65),(26,66),(27,62),(28,68),(29,64),(30,70),(31,71),(32,77),(33,73),(34,79),(35,75),(36,76),(37,72),(38,78),(39,74),(40,80),(81,135),(82,123),(83,137),(84,125),(85,139),(86,127),(87,131),(88,129),(89,133),(90,121),(91,128),(92,132),(93,130),(94,134),(95,122),(96,136),(97,124),(98,138),(99,126),(100,140),(101,141),(102,158),(103,143),(104,160),(105,145),(106,152),(107,147),(108,154),(109,149),(110,156),(111,153),(112,148),(113,155),(114,150),(115,157),(116,142),(117,159),(118,144),(119,151),(120,146)], [(1,17),(2,18),(3,19),(4,20),(5,16),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,52),(42,53),(43,54),(44,55),(45,56),(46,57),(47,58),(48,59),(49,60),(50,51),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75),(81,100),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,97),(89,98),(90,99),(101,120),(102,111),(103,112),(104,113),(105,114),(106,115),(107,116),(108,117),(109,118),(110,119),(121,126),(122,127),(123,128),(124,129),(125,130),(131,136),(132,137),(133,138),(134,139),(135,140),(141,146),(142,147),(143,148),(144,149),(145,150),(151,156),(152,157),(153,158),(154,159),(155,160)], [(1,7),(2,8),(3,9),(4,10),(5,6),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(81,95),(82,96),(83,97),(84,98),(85,99),(86,100),(87,91),(88,92),(89,93),(90,94),(101,115),(102,116),(103,117),(104,118),(105,119),(106,120),(107,111),(108,112),(109,113),(110,114),(121,134),(122,135),(123,136),(124,137),(125,138),(126,139),(127,140),(128,131),(129,132),(130,133),(141,157),(142,158),(143,159),(144,160),(145,151),(146,152),(147,153),(148,154),(149,155),(150,156)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,129,12,137),(2,123,13,131),(3,127,14,135),(4,121,15,139),(5,125,11,133),(6,138,16,130),(7,132,17,124),(8,136,18,128),(9,140,19,122),(10,134,20,126),(21,160,31,149),(22,154,32,143),(23,158,33,147),(24,152,34,141),(25,156,35,145),(26,144,36,155),(27,148,37,159),(28,142,38,153),(29,146,39,157),(30,150,40,151),(41,92,57,97),(42,82,58,87),(43,100,59,95),(44,90,60,85),(45,98,51,93),(46,88,52,83),(47,96,53,91),(48,86,54,81),(49,94,55,99),(50,84,56,89),(61,118,71,113),(62,108,72,103),(63,116,73,111),(64,106,74,101),(65,114,75,119),(66,104,76,109),(67,112,77,117),(68,102,78,107),(69,120,79,115),(70,110,80,105)])
Matrix representation ►G ⊆ GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 26 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 |
0 | 11 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 22 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 19 | 12 | 0 | 0 |
0 | 4 | 22 | 0 | 0 |
0 | 0 | 0 | 32 | 12 |
0 | 0 | 0 | 7 | 9 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,26,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,10,11,0,0,0,0,4,0,0,0,0,0,1,22,0,0,0,0,40],[40,0,0,0,0,0,19,4,0,0,0,12,22,0,0,0,0,0,32,7,0,0,0,12,9] >;
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | ··· | 4J | 4K | 4L | 4M | 4N | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C5⋊D4 | D4⋊2D5 |
kernel | C2×C23.18D10 | C2×C10.D4 | C23.18D10 | C2×C23.D5 | C23×Dic5 | D4×C2×C10 | C22×C10 | C22×D4 | C2×C10 | C22×C4 | C2×D4 | C24 | C23 | C22 |
# reps | 1 | 2 | 8 | 3 | 1 | 1 | 4 | 2 | 8 | 2 | 8 | 4 | 16 | 8 |
In GAP, Magma, Sage, TeX
C_2\times C_2^3._{18}D_{10}
% in TeX
G:=Group("C2xC2^3.18D10");
// GroupNames label
G:=SmallGroup(320,1468);
// by ID
G=gap.SmallGroup(320,1468);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations